Abstract
<jats:p>(1) Background: Quantitative EEG (QEEG) offers potential for identifying objective neurophysiological biomarkers in psychiatric disorders and guiding neurofeedback interventions. This study examined whether three nonlinear QEEG metrics—Lempel–Ziv Complexity, Tsallis Entropy, and Renyi Entropy—can distinguish children with autism spectrum disorder (ASD) from typically developing (TD) peers, and assessed their relevance for neurofeedback targeting. (2) Methods: EEG recordings from 19 scalp channels were analyzed in children with ASD and TD. The three nonlinear metrics were computed for each channel. Group differences were evaluated statistically, while machine learning classifiers assessed discriminative performance. Dimensionality reduction with t-distributed Stochastic Neighbor Embedding (t-SNE) was applied to visualize clustering. (3) Results: All metrics showed significant group differences across multiple channels. Machine learning classifiers achieved >90% accuracy, demonstrating robust discriminative power. t-SNE revealed distinct ASD and TD clustering, with nonlinear separability in specific channels. Visual processing–related channels were prominent contributors to both classifier predictions and t-SNE cluster boundaries. (4) Conclusions: Nonlinear QEEG metrics, particularly from visual processing regions, differentiate ASD from TD with high accuracy and may serve as objective biomarkers for neurofeedback. Combining complexity and entropy measures with machine learning and visualization techniques offers a relevant framework for ASD diagnosis and personalized intervention planning.</jats:p>